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SUMMARY 

Experiences relating to the application of finite element models for laterally averaged stratified flow are 
discussed and modifications to the basic approach are suggested that alleviate these difficulties. An example 
problem is used to demonstrate the revised model and to make a preliminary assessment of the hydrostatic 
pressure assumption when applied to reservoir analysis. 
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INTRODUCTION 

There are now a growing number of models that are applicable to the simulation of stratified flow 
in reservoirs and estuaries. These models use both finite difference and finite element algorithms 
and simulate time transients using both explicit and implicit schemes. 1-4 

Frequently the descriptions of applications of models of this type show details of successful 
simulations but do not detail all the problems that arose. It is the purpose of this paper (a) to review 
some of the difficulties experienced using the previously described RMA-7 model,' (b) to present 
some alternatives for resolution of these problems both for the solution technique and for the basic 
structure of the equations and (c) to show their impact when applied to a demonstration reservoir. 

The principal difficulties that will be reviewed include those associated with the free surface, 
which creates an uncertainty as to the geometric extent of the problem, the specification of 
satisfactory boundary conditions where flow enters and leaves the system, and the numerical 
sensitivity of pressure and density variations that, coupled with the aspect ratio of typical 
problems, can lead to unstable results. 

Solutions that are evaluated include geometric transformations that fix the geometric extent of 
the problem, reformulation of the pressure term and incorporation of the hydrostatic pressure 
assumption. 

In order to define the problem, the basic equations used in the RMA-7 model will be presented, 
together with a description of the finite element implementation. 

GOVERNING EQUATIONS AND SOLUTION METHOD 

The Navier-Stokes equations for two dimensional flow in association with the convection- 
diffusion equation for heat form the basic equations that describe the stratified flow system (in 
estuarial cases the heat flow equation may be augmented or replaced by a salinity transport 
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equation of the same form). They may be written as: 

au au 
ax ay -+--0, 

Subject to an equation of state that relates temperature and density F(p,  T )  = 0, where u, u are 
the velocity components in the Cartesian directions, x horizontally and y vertically upwards. g 
is acceleration due to gravity, positive downwards, p is the pressure, p is the density, T is the 
temperature, C is the specific heat and E,,, cyyr E,,, eYy, D,, and D,, represent the turbulent eddy 
and diffusion coefficients, respectively. 

A weighted residual scheme is used to develop the finite element algorithm for the governing 
equations. The formulation has been described in detail previously* and for present purposes 
only a brief overview is given here. 

The basic elements used are isoparametric curved triangles and quadrilaterals with 6 and 8 
nodes, respectively. The model uses mixed interpolation with quadratic shape functions for 
velocity components and temperature and linear functions for pressure. 

The model uses a Newton scheme to incorporate the non-linear terms with several iterations 
per time step and an implicit Crank-Nicolson weighting scheme that steps forward through 
time. However a single solution step, perhaps with several iterations, can be used to simulate a 
system that is in steady state. Examples of earlier solutions using this model have been presented 
in Reference 2. 

PREVIOUS EXPERIENCE 

The earliest test cases and applications of this model focused on experimental data available for 
laboratory size experiments, thus the space scale of the application was relatively limited and 
for stratified flow cases the velocities were very small. Later applications were made to full size 
prototype systems of lakes and estuaries. In these applications the final results that were obtained 
showed good correlation with available data, but problems appeared in several areas. The 
sections that follow discuss these difficulties and the steps undertaken to resolve them. 

TREATMENT O F  THE FREE SURFACE 

In the general time-dependent case the free surface moves with time. For reservoirs the surface 
slopes are usually very small and the elevation of the water surface is approximately that at the 
dam. For estuaries, however, the spatial variation of surface elevation is much larger when, for 
example, tidal waves are traversing the system. The geometric extent of the system itself varies 
during the simulation and becomes a continuous parameter of the problem. Two schemes were 
tested to compute the free surface. Both are limited to relatively small changes in the free surface 
during a time step, and require a finite element mesh that varies in time. In each method an 
initial estimate of the free surface is made, and successive corrections used to estimate the true level. 
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(a) In the first approach a correction step consists of computing a solution where the pressure 
at the surface is set equal to zero, but where the velocity components are unconstrained. 
The free surface co-ordinates are then adjusted so that the normal velocity of the surface 
matches the rate of change of surface location, simultaneously accounting for any storage 
change during the time step. That is, the continuity equation is solved for the surface profile. 
In steady state cases, the surface is adjusted by assuming that the velocity normal to the 
water surface acts under gravity alone and modifying the elevation to the level associated 
with zero vertical velocity. 

(b) The second approach develops a correction step by computing a solution for the normal 
velocity at the free surface so that it is equal to the rate of change of the free surface 
(computed from the current and previous elevations). That is, the velocities are specified 
but the magnitude of the pressure is a dependent variable. For steady state cases the 
normal velocity is specified as zero. The free surface is then adjusted so that the pressure 
at the surface is reduced to zero. 

Both these schemes appear attractive, but in prototype systems, even for steady state problems, 
the first scheme repeatedly became unstable and the second approach showed very slow conver- 
gence characteristics. In actual applications both methods were too expensive to use. 

Subsequent prototype applications of the model have used the latter scheme, but resorted to 
outside estimation in order to define the free surface and discontinued any geometric variation 
within the time step. This method is thus comparable to the 'rigid lid method' used in many 
three dimensional methods and incorporates some inconsistency in the overall satisfaction of 
continuity for the system. 

An alternative procedure can be constructed that reduces these difficulties. This method 
transforms the basic equations to create a constant geometric configuration and makes the free 
surface elevation a dependent variable of these modified equations. The difficulty with this 
method is that transformations of this type complicate the basic equations, the computer 
programming and the convergence of the solution. This approach has been implemented by the 
author5 for solution to the three-dimensional flow equations written in shallow water form. In 
this case there is only one pressure or head variable at a particular horizontal location. 

SPECIFICATION O F  ENTRY/EXIT BOUNDARY CONDITIONS IN 
ESTUARIAL APPLICATIONS 

Specification of entry/exit boundary conditions for a fully stratified problem requires knowledge 
either of the velocity distribution with depth at entry and/or exit or knowledge of the pressure 
distribution. In practice such data are seldom available for both boundaries. Typically, available 
data consist of upstream flow and temperature distribution, and surface elevations downstream, 
sometimes with a temperature distribution. The modeller must then generate some kind of 
expansion of the known conditions to adequately represent the system. In estuarial applications 
on an incoming tide, the temperature conditions must be estimated together with a pressure 
distribution (using for example, a hydrostatic assumption), but on an outgoing tide the 
temperature will be determined by the convective transport and because of the unknown density 
it is not possible to estimate beforehand the pressure distribution (even under the hydrostatic 
assumption). This difficulty can be reduced by using a separate depth-averaged simulation to 
estimate the overall flow rates at the boundaries and then defining a vertical distribution based 
on engineering experience. The resulting velocities then provide the modeller with an approxim- 
ation to the boundary conditions. 
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It is noteworthy that the depth-averaged simulation can also be used to specify the approximate 
free surface needed to resolve the free surface difficulty discussed in the section above, even in 
estuarial cases. 

An alternative and, in a sense, more satisfactory solution is to extend the system to be analysed 
so that it includes boundary conditions that are more uniform. For example, beyond the extent 
of stratification. Such an approach may not be feasible at all times, however, either because of the 
specifics of the problem or the economics of computer modelling. 

NUMERICAL ACCURACY WHEN OPERATING WITH THE PRESSURE TERM 

The vertical momentum equation is a balance between the inertia and turbulence terms, the 
differential gradient associated with pressure and the self weight terms. These latter two terms 
approximately cancel each other out and computations of pressure gradients in the vertical and 
also in fact the horizontal directions are strongly influenced by small differences of large numbers. 
This problem is exacerbated by the numerical problem introduced by the high aspect ratio of 
the finite element network typically necessary for these problems. 

A second and more significant problem arises because the model uses mixed interpolation 
with linear pressures and quadratic velocity and temperature distributions. When an irregular 
network in the vertical direction is defined (see Figure 1 where the elevations of C and D are 
different and where triangular elements are used) it is possible to generate circulation for a 
system that is structured with exactly horizontal layers of linearly varying density that should 
be exactly at rest. 

For example, consider a still tank with the density linearly increasing with depth and a zero 
horizontal gradient at all locations, i.e. p = p o  + a(h - y), where h is the elevation of the water 
surface and p o  is the density at the water surface. Then, in Figure 1, pc  = p o  + ah,, pD = po + ah,. 
Integrating vertically to obtain pressure at nodes C and D the tank will be hydrostatic: 

then 

Y 

Y 

Figure 1. Typical element with non-horizontal strucrure 
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In finite element applications, where p is assumed linear, the resulting pressure gradient along 
the horizontal line drawn from C will be given by 

Thus if k ,  f k,, the pressure gradient will be non-zero and forces that create circulation will 
be induced. 

As a demonstration of this problem, consider the network shown in Figure 2(c) which will be 
further defined when the example problem is discussed. It represents a reservoir at actual scale; 
if it is assumed that the temperature distribution is fixed and varies linearly with elevation 
(surface temperature of 20.0 "C and lowest temperature of 15.76 "C, with a linear equation of 
state relating density and temperature) then the original model induces circulation with a 
maximum velocity of 0.091 1 fps at node 259. 

These inconsistencies can be reduced with the introduction of the concept of discrepancy from 
hydrostatic pressure P,. 

Let P, be defined as the discrepancy from hydrostatic pressure at an elevation y in the system 
which has a free surface at elevation k at this location (i.e. y and k lie on the same vertical line), 
i.e. 

pD = P - Pgdq. 1: 
The pressure and density terms in the vertical momentum equation may be restated as 

and the pressure term of the horizontal momentum equation may be rewritten 

If P, = lltpydy, the horizontal term becomes 

ap ap, d ~ ,  + --. -=- 
ax ax ax 

Note that P,, and thus dP,/dx, reflect the effects of complex distributions of temperature. It is 
also possible to use the concept of a reference density in order to reduce dependence of the 
magnitude of P, on depth and so to eliminate the occurrence of small differences of large numbers 
that are encountered when computing horizontal pressure gradients. Let this reference density 
be pn. Then, if 

PE = g(P - Pn)dq, s: 
P" = g (P - P A  dq + P n d h  - V )  = P,Y, + P n d h  - YX s: 

and 
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In this form the dependent variable P ,  is the discrepancy from hydrostatic pressure; it is still 
approximated by a linear function and mixed interpolation is thus preserved. Pg and p,g(h - y )  
are the components of hydrostatic pressure which may be determined directly from the density 
values, and may be considered almost as external tractions represented by quadratic approxi- 
mations that act on the system. 

For convenience of this integration the elements should be arranged so that all nodes lie on 
vertical lines. 

If we return to our original still tank problem, with the irregular element of Figure 1, the 
vertical momentum equation is identically satisfied, since the pressure distribution is hydrostatic 
and P D  = 0. 

In the horizontal momentum equation &/ax = 0, dP,/ax = 0; only aPg/ax can possibly exist. 
In the example the density is assumed to vary linearly with depth. Let p n = p o  so that 
p = p o  + a(h -y ) .  Thus at C 

Similarly at D 

As expected, the function P$ shows a simple quadratic form with respect to depth; however 
the form of P$ in this method is not limited to the linear pressure approximation used previously; 
in fact P$ can be computed using a quadratic approximation down each vertical line of the 
system, so that in subsequent computation for this case aP;";/ax will be exactly zero. 

In the reservoir example of Figure 2(c), previously discussed, the modified version of the 
program does indeed induce no circulation. 

The preceding analysis has been developed for triangular elements with straight sides. For 
these elements the isoparametric transformation applied to linear functions generates linear 
functions. In the case of quadrilateral elements this relationship does not hold and the analysis 
above does not apply exactly. Application of these methods to the model using quadrilateral 
elements has shown that the amount of circulation induced can be considerably reduced, but 
not to zero. The evidence of this analysis suggests that triangular elements may be preferable 
when using this model. 

Note that this modification will only function exactly even for triangles if density is described 
as a linear function over the element. In most applications the state equation and the temperature 
or salinity distributions are non-linear, so that in order to implement this scheme with a quadratic 
description of P$ some information is lost. It is believed that the use of a higher approximation 
of P$ cannot be economically justified. 

THE HYDROSTATIC PRESSURE ASSUMPTION 

In order to simplify the complexity of stratified flow numerous researchers have eliminated the 
vertical momentum equation by assuming that the vertical pressure gradient exactly matches 
the gravity force, 'the hydrostatic pressure assumption'. The derivation above presents a 
convenient vehicle for evaluation of the impact of this assumption, the magnitude of P derived 
in a solution is a direct measure of this approximation. It is also relatively easy to modify the 
computer code to incorporate the hydrostatic assumption and compare the resulting velocity 
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regimes. The momentum equation in the vertical direction is completely eliminated and the 
continuity equation describing flow in terms of the two velocity components is replaced by an 
integrated equation that represents overall continuity in the horizontal direction. The pressure 
variable defined in terms of discrepancy from hydrostatic is identically zero. The only pressure 
parameter is the overpressure associated with the rigid lid assumption which is constant for any 
vertical line. 

The finite element formulation can thus be written entirely in terms of horizontal velocities 
at points on a vertical line and a single pressure variable on each vertical line. In this process 
the contribution of the vertical velocities to the horizontal momentum equation is neglected. If 
however it is desired to compute the vertical velocities and to incorporate them into the 
momentum terms, it is possible to add a differentiated form of the local continuity equation to 
the structure. The act of differentiation allows the specification of values for vertical velocity at 
all boundary points in terms of horizontal velocities. Details of this approach applied to three 
dimensional problems have been described elsewhere by the author.6 The equations that are 
solved in the hydrostatic model have the forms: 

x-momentum: 

overall continuity: 

differentiated continuity 

In these equations P,, h-the water surface elevation- and B,-the bottom elevation-are 
functions of x only. In this analysis h is assumed fixed in time to form the 'rigid lid' assumption 
and P,  then represents the overpressure of the 'rigid lid' interface. 

DEMONSTRATION PROBLEM 

In order for a demonstration problem to be meaningful, a system with dimensions approximating 
those of a reservoir must be simulated. The effectiveness of the finite element model has already 
been demonstrated using comparisons to laboratory scale systems, and simulation of actual 
prototype systems such as Lake Taneycomo in Missouri. The purpose of this demonstration 
problem is to show that the modified system behaves appropriately on full size problems and 
to investigate the influence of the hydrostatic pressure assumption for reservoir simulation. 
Figure 2(a) presents the basic dimensions for the test case with specified upstream inflow, and 
withdrawal through two outlets. The reservoir has a highly variable cross-section, as is demons- 
trated in Figure 2(b), which shows the contours of constant width, and Figure 2(c) shows the 
finite element representation. In this case the rigid lid boundary condition is used to describe 
the water surface. The resulting water surface pressures can thus be used to evaluate the solution. 
The problem is based upon an actual reservoir and all flow rates, dimensions and temperature 
gradients are consistent with the prototype system. 
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For this problem the temperature distribution has been specified from measurements taken 
at various points in the reservoir. Temperatures vary from 17°C at the upstrearn section to 
16 "C at the outlets and 10.5 "C at the lowest levels. Figure 3 presents isotherms for the system. 
A steady state analysis is used as the basis for comparison. The flow regime is thus stratified 
and the velocity distribution is partly driven by the variation of density. 

Any solutions to problems of this nature are strongly dependent on the eddy viscosity used. 
The current version of the models allows the specification of all four eddy coefficients 
independently for each element; however, there is seldom sufficient data to justify or predefine 
such a detailed description. It is commonly assumed that the magnitudes of the xy and y y  terms 
are functions of density gradient and velocity; see for example Reference 3. For this application 
it has been assumed that the nominal values of these coefficients are unifom throughout the 
reservoir, but that the actual values of Ex,  and E,, are scaled to a function of the stability S,  

.-_____- 4500 ft  - - ~  

N 

Figure 2(a). Dimension demonstration problem 

Figure 2(b). Contours of constant width-demonstration problem 



Figure 2(c). Finite elem
ent netw
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problem
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\ 14 

Figure 3. Contours of constant temperature-demonstration problem 

where S = - (l/p)(dp/dy). The exact form of the dependence is taken from analysis of reservoir 
data undertaken by Water Resources Engineers7 while developing a one dimensional model for 
predicting temperatures in deep reservoirs. Specifically 

and 
Exy = %yn for S < 3.048 x 

cXy = cXyn x 1.3766 x 10-7S-0'7 for S > 3-048 x 

The nominal values used were 

E,,, =: cyxn = 1001b-s/ft2 
cXyn = E~~~ = 0.25 lb-s/ft2 

A linear equation of state was used for this analysis, taking the form p = 1.938641 - 
3.055722 x 10-4(T - 13.625). In order to evaluate the model three different cases have been 
evaluated. In case 1 the flow regime is assumed to be fully homogeneous, that is the influences 
of temperature stratification are ignored. In case 2 the stratified flow regime was simulated with 
full equations and, finally, in case 3 the stratified flow regime was modelled using the hydrostatic 
approximation. Case 1 was included in this analysis to establish a baseline flow regime that 

Figure 4. Reservoir velocities-homogeneous case 
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- 
0.5 Ips 

Figure 5. Reservoir velocities-stratified case 

shows by comparison the influence of temperature on the flow regimes for the other two cases. 
The overall flow structure is presented as three sets of velocity vectors in Figures 4, 5,  and 6. A 
comparison of these Figures shows that overall distribution is as expected, with the horizontal 
flow case showing no reversal of flow and the two stratified cases showing strong reversals below 
the level of the thermocline. The solutions for the hydrostatic and full momentum equations are 
generally very similar; the only differences occur in the vicinity of the withdrawal structure. It 
is important to point out that these Figures are to a distorted vertical scale, so that the magnitude 
of the very small vertical velocity components is highly exaggerated. In order to make further 
comparison of the flow regimes, Table I presents the velocities for all three cases on a vertical 
section close to the dam and at a point further upstream; exact locations are shown in Figure 
2(a). Note the similarity of horizontal velocity distributions, particularly for the more upstream 
location; however, magnitudes of the reverse flow are slightly larger for the hydrostatic equation 
solution, probably reflecting the lack of energy loss in the vertical momentum equation. The 
vertical velocities show some deviations particularly close to the dam, but the magnitudes are 
very small. When the stratified flow velocities are compared with the homogeneous flow velocities 
it is clear that the hydrostatic assumption adequately captures the essence of the stratified flow 
regime. 

Figure 6. Reservoir velocities-stratified case: hydrostatic assumption 
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Table I. Demonstration case: velocities on vertical sections 

Horizontal velocities (fps) Vertical velocities (fps) 
-~ 

Homogeneous Full Hydrostatic Homogeneous Full Hydrostatic 
Node flow equation approximation flow equation approximation 

Section 1 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 

Section 2 
167 
168 
169 
170 
171 
229 
172 
230 
173 
23 1 
174 
232 
175 

- 0.10160 
- 0'13720 
- 0.28480 
- 0'42840 
- 0.50030 
- 0.43410 
- 0.308 10 
- 0.23030 
- 0.201 20 
- 0.181 10 
- 0.16010 
- 008570 
- 0.00 1 20 

- 0.23 160 
- 0.22570 
- 0.20940 
- 0.19060 
- 0.16860 
- 014720 
- 0.12650 
- 0.10780 
- 0.09220 
- 0.08250 
- 0'07540 
- 007100 
- 0.06940 

- 0.09860 
- 0.13420 
- 0.28210 
- 0.42690 
- 0'49990 
- 0'43450 
- 0.3 1040 
- 0.23340 
- 0.20490 
- 0.1 8500 
- 0.1 6440 
- 0.09280 
- 0.01 320 

- 0.29800 
- 0.28610 
- 0.25500 
- 0.22250 
- 018750 
- 0.1 5680 
- 0.12950 
- 0.04050 

OQ0940 
003390 
0.05170 
0.06570 
0.07580 

- 0.12260 
- 0.1 5610 
- 0.29790 
- 0'44320 
- 0'49630 
- 0.47240 
- 0.32950 
- 0.23720 
- 0.19100 
- 0 16090 
-011880 

0.02270 
- 008020 

- 029780 
- 0.28600 
- 0.25490 
- 0.22250 
- 0.18740 
- 0.1 5620 
- 0.12800 
- 0'03850 

0.01230 
0.03660 
0.05480 
0.06910 
0.07990 

0.00000 
- 0.00778 
- 0.00776 
- 0.00307 

0.00116 
- OQ0195 

0.00346 
0.00520 
0.00786 
0-00301 
0.00095 
0.00057 
OQOO 1 5 

0~00000 
- 0.00053 
- 0.001 12 
- 0.00 1 62 
- 0.00183 
- 000198 
- 04Xl183 
- 0.00165 
- 0'00143 
- OQ0128 
- 0.001 19 
- 0.00109 
- 0'00092 

0~00000 
- 0.00770 
- 0.00806 
- 0'003 10 

0.00 1 34 
- 0'00222 

0.00276 
0.0045 1 
0.00704 
0.00172 

- 0.00069 
- 0.00050 

0.001 64 

0~00000 
OQ0036 
090039 
0,0007 1 
0~00100 
000147 
0.00157 
0.00255 
0.00230 
000260 
000205 
OQ0178 
0~00101 

0~00000 
- 000330 
- 0.01076 
- OQ0770 

0.00329 
001727 
002341 
0.02202 
0.02 120 
0.02204 
0.02237 
0.01880 
001002 

0~00000 
0.00043 
0.001 02 
000136 
0.00 1 80 
000228 
0.0028 1 
0.00320 
000319 
OG0307 
0.00277 
0.00207 
0.00106 

Table 11. Surface pressures by node 

Stratified flow 

Homogeneous flow, Full solution, Hydrostatic case, 
Node Slugs/ftZ Slugs/ft2 Slugs/ftZ 

1 
176 

8 
19 
34 
52 

167 
70 

149 
88 

107 
187 
129 

- 4.196 
- 1'098 
- 0.372 
- 0.008 

0.059 
0.089 
0.109 
0.1 19 
0.1 15 
0.127 
0.128 
0.234 
0.000 

- 3.910 
- 0.802 
- 0.145 

0.078 
0.107 
0.126 
0.162 
0.125 
0.079 
0.07 1 
0.099 
0.228 
0.000 

- 3.882 
- 0748 
- 0.096 

0.123 
0.158 
0.170 
0.208 
0.167 
0125 
0.117 
0.150 
0.254 
0000 
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The velocity regimes and the pressure distributions along the water surface show some 
differences for the two cases. Table I1 presents a comparison of values for each case. 
However, the magnitude of surface elevation change for these cases is less than ljl00 ft. It 
appears that the primary driving force that generates circulation is a combination of momentum 
and continuity, the proportions of which vary for the three cases, and that from a measurement 
perspective these surface slope values are indistinguishable. 

CONCLUDING REMARKS 

The purpose of this paper has been to review recent experience with laterally integrated models 
and to indicate some of the steps necessary to ensure satisfactory behaviour. As the demonstration 
problem shows, the modified model gives satisfactory results and the generally accepted hydro- 
static assumption appears reasonable for reservoir scale applications, although there are some 
differences in magnitude of velocities, except in the vicinity of the outlet works, where the flow 
is driven by larger pressure gradients. 
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